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Abstract. The Fermi surface (FS) shape of the organic superconductor (MDT-TSF)(AuI2)0.436 with an
incommensurate anion structure (MDT-TSF: methylenedithio-tetraselenafulvalene) has been investigated
by means of the optical reflectance spectra and angular-dependent magnetoresistance oscillations (AMRO).
The difference of the plasma frequencies between the interstack and the intrastack directions indicates that
the overall band structure has small anisotropy (ωp,⊥/ωp,‖ ≈ 0.62). The observation of the AMRO shows
the presence of a small closed orbit, which can be assigned to the overlapped area of the large FS. This
demonstrates that the incommensurate anion potential is crucial to remove the degeneracy of the energy
bands on the zone boundary. The magnetoresistance peak in the fields applied within the conducting layers
shows an unusually large interlayer transfer integral (t⊥ ≈ 1 meV) among organic superconductors.

PACS. 74.70.Kn Organic superconductors – 71.18.+y Fermi surface

1 Introduction

Recently, Takimiya et al. have synthesized MDT-TSF
(Fig. 1a), and have discovered superconductivity (Tc =
4.5 K) in the AuI2 salt [1]. Although most or-
ganic superconductors form commensurate crystals [2,3],
the anion lattice of this compound is incommensu-
rate to the donor lattice, and the resulting composi-
tion is non-stoichiometric, and is represented as (MDT-
TSF)(AuI2)0.436 [4]. As shown in Figure 1b, this salt has
a uniform donor stacking along the a-axis and the donors
form a conducting sheet on the ab plane.

A superconductor with an incommensurate periodic
potential is a unique material. Azbel has theoretically
pointed out that a clean metal with an incommensurate
periodic potential shows a fine structure of quantum oscil-
lations associated with the multiply folded first Brillouin
zone (BZ) [5]. Recently, we have performed the Shubnikov-
de Haas (SdH) oscillation measurements to verify this pre-
diction [6]. We have not, however, observed such many dif-
ferent frequencies coming from the multiple folding, but

a e-mail: kawamoto@o.cc.titech.ac.jp

found several frequencies all of which are assigned to the
orbits of the original FS’s and the reconstructed ones ob-
tained from a single shift of the BZ by 3q, where q is
the fundamental wave vector of the anion lattice. This
may be related to the fact that the 3q spots in the X-ray
superlattice reflection are very strong. The FS reconstruc-
tion occurs only by a single shift associated with the most
dominant superlattice potential.

Although the FS reconstruction due to the incommen-
surate anion potential is proved by the SdH oscillation ex-
periments, we have to assume a relatively small transverse
interaction to explain the observed SdH oscillations [6].
Thus precise estimation of the FS anisotropy is indispens-
able. In addition, the SdH oscillation originating in the
small orbit (γ-orbit) appears from lower magnetic fields
than the magnetic breakdown orbit of the large FS (δ-
orbit) is observed (Fig. 1c); this indicates that the degen-
eracy of the zone boundary, which is intrinsic to the donor
lattice, is removed by the incommensurate anion potential.
A similar effect coming from the incommensurate anion
potential is expected in other methods to investigate the
FS shape. In the present paper, two kinds of experiments
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Fig. 1. (a) MDT-TSF molecule, (b) donor arrangement pro-
jected along the molecular long axis, and (c) the Fermi sur-
face calculated on the basis of the extended Hückel method
from the donor lattice. The dotted Fermi surface is calcu-
lated based on the transfer integrals (ta = 272.7, tp1 = −30.6,
and tp2 = −128.2 meV) obtained from the atomic parame-
ter set (I), and the solid curve is the result by the transfer
integrals (ta = 106.9, tp1 = −10.3, and tp2 = −35.4 meV)
estimated from the parameter set (II).

have been carried out to determine the FS shape and
anisotropy.

First, the polarized optical reflectance has been mea-
sured to obtain the original FS (δ-orbit) without the effect
of the incommensurate lattice. Previously, the electronic
state anisotropy of many organic conductors has been in-
vestigated by the optical experiments [7–13]. The over-
all band structure is explored by the combination of the
plasma frequencies obtained from the analysis of the op-
tical measurements and the tight-binding calculations.

Second, the angular dependent magnetoresistance os-
cillations (AMRO) have been measured to clarify the de-
tail of the FS topology. Although magnetic quantum os-
cillations do not provide any details of the shape of the
FS sections, the AMRO gives accurate information about
the shape of the FS [14,15]. The influence of the incom-
mensurate anion potential is investigated by the analysis
of the AMRO.

2 Experiment

Single crystals were prepared by the electrocrystalliza-
tion [1].

The optical reflectance spectra were measured by the
use of Olympus MMSP micro spectrophotometer from
4200 cm−1 to 25000 cm−1 and with an FT-IR micro
spectrophotometer (Jasco FT/IR-620) from 650 cm−1 to
7000 cm−1 at room temperature.

The energy band structure was calculated based on the
extended Hückel method and the tight-binding approxi-
mation. The band calculation is another good method to
estimate the anisotropy, but the resulting anisotropy is
sometimes sensitive to the adopted parameters (Fig. 1c).
For comparison, we examined two kinds of atomic orbital
parameters: set (I) with Se 4d and S 3d orbitals, and set
(II) without these orbitals [16,17]. The transfer integrals,
ti, are estimated from the intermolecular overlap integrals
Si as ti = E × Si, in which the energy level of the high-
est occupied molecular orbital (HOMO) E is taken to be
−10 eV. The interaction modes (a, p1, and p2) are defined
in Figure 1b.

For the AMRO measurements, the samples were
mounted on a cryostat in a 14 T superconducting mag-
net with two degrees of rotational freedom with respect
to the magnetic field, and was cooled to 1.7 K. To im-
prove the signal to noise ratio, relatively large ac current
(about 1 mA) was applied along the c-axis. No appreciable
heating effect due to the current was found. Lock-in and
preamplifiers were used for the high-sensitive detection.

3 Results and discussion

3.1 Optical reflectance

Figure 2a shows optical reflectance spectra for two po-
larization axes (‖ a and ‖ b) at room temperature. Both
spectra show clear plasma edges even at room tempera-
ture, in contrast to the relatively obscure plasma edges
observed in some ET salts like κ-(ET)2Cu(NCS)2 [ET:
bis(ethylenedithio)tetrathiafulvalene] [18–20]. The ‖ a dis-
persion is much larger than that along b, supporting the
relatively small transverse (‖ b) interaction assumed in
the SdH measurements. More careful analysis is, however,
necessary for quantitative estimation.

The spectrum along the a axis shows the Drude re-
sponse with a broad peak around 3000 cm−1. Therefore,
the ‖ a spectrum can be analyzed by the Drude-Lorentz
model described by the following equations [7,13,21]:

R =

∣∣∣∣∣
√

ε̃ − 1√
ε̃ + 1

∣∣∣∣∣
2

, (1)

ε̃ = ε∞ − ω2
p

ω2 + iωΓ
−

∑
j

ω2
pj

(ω2 − ω2
j ) + iωΓj

, (2)

where R is the reflectance, ε̃ is the complex dielectric func-
tion, ε∞ stands for the frequency-independent dielectric
constant, ωp and Γ are the plasma frequency and the re-
laxation rate of the charge carriers, and ωj , Γj , ωpj are
the parameters of the Lorentz oscillators for simulating
the other dispersions. The obtained Drude-Lorentz pa-
rameters are ε∞,a = 3.85, Γa = 0.11 eV, ωp,a = 0.88 eV,
ω1 = 0.27 eV, Γ1 = 0.28 eV, and ωp1 = 0.82 eV, respec-
tively. The conductivity spectrum has been calculated as
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Fig. 2. (a) Optical reflectance spectra and (b) optical con-
ductivities at room temperature. The solid lines in the upper
figure is the Drude-Lorentz fit. The solid lines in the lower fig-
ure represent experimental results and the dotted lines show
the extrapolation.

shown in Figure 2b by the Kramers-Kronig transforma-
tion based on the extrapolated reflectance, R(ω), on the
assumption of the Drude-Lorentz model in the low fre-
quency region.

The ‖ b spectrum shows the simple Drude response.
This spectrum has been analyzed by the simple Drude
model without Lorentz oscillator in the above equation.
The obtained Drude parameters are ε∞,b = 3.88, Γb =
0.27 eV, and ωp,b = 0.55 eV, respectively. The conductiv-
ity spectrum has been calculated as shown in Figure 2b
by the same method as the ‖ a spectrum.

From the plasma frequency, we can estimate the ef-
fective mass by using m∗ = n e2/(ε0 ω2

p), where n is the
hole number density. The effective mass is estimated to
be 2.4m0 and 6.1m0 for ‖ a and ‖ b (m0 is the free
electron mass), respectively. The averaged effective mass,
〈m∗

opt〉 =
√

m∗
a,optm

∗
b,opt = 3.8m0, is almost in agree-

ment with the averaged δ-orbit effective cyclotron mass
(〈m∗

c,δ〉 =
√

m∗
δ1

m∗
δ2

= 4.3m0) evaluated from the SdH

result. The effective cyclotron mass is only slightly larger
than the optical mass by 10%. In some ET superconduc-
tors, the cyclotron mass is typically 1.2–1.7 times larger
than the optical mass [11,18–20,22–30]. The small differ-
ence in the present compound may suggest the relative
unimportance of the many-body effect.

The optical zero-frequency conductivity along the
a axis, σopt(0), is estimated as σopt(0) = ε0ω

2
p/Γ =

960 S cm−1, which is in good agreement with the dc con-
ductivity σdc ≈ 1000 S cm−1 from our transport measure-
ments.

The Fermi energy is represented by EF =
�

2 k2
F,α/(2m∗

α) upon the assumption of a parabolic en-
ergy band, where kF,α is the Fermi wave number along
the α-direction. Therefore, through the anisotropy of the
effective mass, the principal Fermi wave number, kF,α, is
related to the corresponding plasma frequency, ωp,α, as
kF,α ∝ 1/ωp,α. From the ratio of the principal plasma
frequencies, we can estimate the anisotropy of the Fermi
wave number as kF,a/kF,b = ωp,b/ωp,a = 0.62, assuming
an elliptical FS. This indicates small anisotropy in the
ab plane. This elliptical δ-orbit makes the γ-orbit cross
sectional area 12.4% of the first BZ. This γ-orbit area
is a little larger than that obtained from the SdH results
(10.4%). This is because the above estimation does not in-
clude the influence of the energy gap at the zone boundary.
Therefore, the obtained Fermi wave number ratio (0.62)
may be smaller than our previous estimation from the
SdH frequencies of the γ-orbit (0.75) [6]. The band cal-
culation based on the atomic orbital parameter set (I)
gives too isotropic result (kF,a/kF,b = 0.93) (Fig. 1c). If
we use the parameter set (II), the anisotropy is enhanced
(kF,a/kF,b = 0.72), and reproduces the estimation from
the optical and the SdH experiments.

The ‖ a conductivity spectrum has a shoulder around
1700 cm−1 (Fig. 2b), which is reproduced by a Lorentz
oscillator in the reflectance spectrum. This may be at-
tributed to the interband transition in analogy with β-
(ET)2I3 [9]. We can explain the broad peak from the in-
terband transition according to the band calculation. The
α-direction plasma frequency is calculated by the following
equation derived from the Boltzmann equation [7,10,21],

ω2
p,α =

ne2

ε0�2

∫∫∫ ∂2E(k)
∂k2

α
f(E(k))dkadkbdkc∫∫∫

f(E(k))dkadkbdkc
(3)

where E(k) is the energy dispersion and f(E(k)) is the
Fermi-Dirac distribution function. We have divided the
first BZ into 40 × 40 meshes, and numerically integrated
the second derivatives of E(k) at T = 0 K. The calcu-
lated ωp,a and ωp,b are 0.85 eV and 0.61 eV, respectively,
under the parameter set (II). These values are in good
agreement with the experimental estimation (0.88 eV
and 0.55 eV). From the theoretically evaluated plasma
frequencies, the averaged effective mass is calculated as
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Fig. 3. Energy band structure. The dotted line (band 2) shows
the region where the interband transition from the band 1 to
the band 2 is possible.

〈m∗
calc〉 =

√
m∗

a,calcm
∗
b,calc = 3.6m0, where m∗

a,calc =
2.6m0 and m∗

b,calc = 5.1m0, in agreement with the value
of the averaged δ-orbit (4.3m0) in the SdH result.

The interband transition can be explained from the
tight-binding energy band

E(ka, kb) = ±2
√

(tp1 + tp2)2 − 4tp1tp2 sin2(kaa/2)

× cos(kbb/2) + 2ta cos(kaa). (4)

Figure 3 shows the energy band structure calculated by
using the parameter set (II). Although the obtained en-
ergy band splits on the Σ line owing to tp1 �= tp2, the
energy band is degenerated on the C line on account of
the lattice symmetry (Pnma). Therefore, the interband
transition occurs from the band 1 to the band 2 on the Σ
line. This is consistent with the presence of the shoulder in
the ‖ a conductivity spectrum. Contrarily, the interband
transition is absent along the b-axis. The band splitting at
the Γ point is 4|tp1 + tp2| = 183 meV∼ 1500 cm−1, which
is close to the shoulder (ω0 ∼ 1700 cm−1 ∼ 210 meV ) of
the ‖ a conductivity spectrum.

In summary, the optical spectra lead to the in-plane
anisotropy to be

√
m∗

a,opt/m∗
b,opt ∼ kF,a/kF,b ∼ 0.62. The

‖ a spectrum indicates that the interband gap is about
210 meV.

3.2 Magnetoresistance

Figure 4 shows angle dependence of the magnetoresistance
for I ‖ c at 1.7 K under the field of 13.5 T. The angles θ
and φ are defined in the inset. According to Yamaji’s the-
ory [31], the magnetoresistance peaks for the simple cor-
rugated cylindrical FS appear with the tan θ periodicity,

∆ tan θ =
π

k‖(φ)d⊥
(5)
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Fig. 4. Angular-dependent magnetoresistance oscillations
(AMRO) at 1.7 K for B = 13.5 T.

and the projection wave number k‖(φ) is

k‖(φ) =
√

k2
F,max cos2(φ − ξ) + k2

F,min sin2(φ − ξ) (6)

for an elliptical FS [15,32]. Here d⊥ is the effective inter-
layer spacing (d⊥ = c/2 = 12.712 Å), kF,min (kF,max) is
the minimum (maximum) Fermi wave number, and ξ is
the inclination of the principal axis from the a-axis.

Figure 5a shows the resistance and the second deriva-
tive (−d2R/dθ2) as a function of tan θ for φ = −60◦. We
have measured the resistance down to 8 T and found that
the characteristic peak features in the second derivative
are independent of the magnetic field. Therefore, the peaks
are not associated with the quantum oscillation, but come
from the AMRO. In our previous paper [6], we have re-
ported several SdH oscillations observed in a wide field
range up to 18 T, which indicate the presence of coherent
cyclotron motion along the closed orbits. The main SdH
oscillation i.e. the main electron trajectory is assigned to
the two-dimensional FS formed around the Y point (γ-
orbit) in the original BZ (Fig. 1c). Therefore, it is quite
likely that the AMRO shown in Figure 4 arises from the
same two-dimensional FS.

The AMRO peaks can be well defined in −d2R/dθ2

curves in Figure 5a. We see that the period of the AMRO,
∆ tan θ, is ∼ 1.8 at φ = −60◦. Figure 5b shows a po-
lar plot of k‖(φ) determined by equation (5). The solid
line is the fitting result according to equation (6) with
kF,min = 0.126 Å−1, kF,max = 0.187 Å−1, and ξ = 88◦.
The deviation from 90◦ is regarded as the setting error
of the sample. The shaded area corresponds to the cross
section of the FS. The cross sectional-area of this FS,
7.4 × 10−2 Å−2 (9.4% of the first BZ), is in good agree-
ment both with the γ-orbit observed in the SdH measure-
ments (10.4% of the first BZ) and with the band calcu-
lation based on the parameter set (II) (8.5% of the first
BZ) [6].

The present AMRO detects the γ-orbit (Fig. 1c). This
situation is the same as that of κ-(ET)2Cu(NCS)2 with
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a gap along the zone boundary [33], in which the mag-
netic break down has been observed under high magnetic
field [29,30]. On the other hand, κ-(ET)2I3, which has the
degenerated energy band along the zone boundary, shows
the quantum oscillation originating in the large orbital
from the low magnetic field [26–28]. The AMRO of this
compound detects the large circular FS [28]. This differ-
ence is explained by the difference of their space groups,
P21 for the Cu(NCS)2 salt and P21/c for the I3 salt [34].
The degeneracy of the energy bands on the zone boundary
occurs when the crystal has glide planes or screw axes hav-
ing translation perpendicular to the boundary [35]. The
donor lattice of the present compound has a twofold screw
axis along the b axis (space group Pnma), so that the band
structure is degenerated on the C zone boundary (Fig. 3).
This should lead to the observation of the δ-orbit. The
actual detection of the γ-orbit both in the previous SdH
investigation and in the present AMRO measurement in-
dicates that the incommensurate anion potential destroys
the screw symmetry, generating a small energy gap on the
C line.
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The magnetoresistance for the magnetic fields nearly
parallel to the conducting plane has a peak structure
as shown in Figure 6a. This structure is ascribed to
the closed orbits formed on the side of the corrugated
two-dimensional FS. The peak structure indicates that
the present compound has a coherent interlayer trans-
port [36,37]. Hanasaki et al. have estimated the interlayer
transfer integral, t⊥, of β-(ET)2I3 from the peak width,
2∆, by using 2∆ = (4t⊥ d⊥ m∗)/(�2 kF ) [36]. Singleton
et al. have analyzed the peak effect of κ-(ET)2Cu(NCS)2
by including the azimuthal angle dependence [38]. For the
corrugated cylindrical ellipsoid FS, the peak effect is writ-
ten by

2∆(φ) =
4t⊥ d⊥ m∗(φ)

�2 kF (φ)

=
4t⊥ d⊥ m∗

�2
√

k2
F,max sin2(φ − ξ) + k2

F,min cos2(φ − ξ)
.

(7)

Here, we use the characteristic Fermi wave numbers esti-
mated from the AMRO analysis and the effective mass,
m∗ = 2.8m0, of the γ-orbit determined by the SdH oscil-
lations [6]. The observed peak widths 2∆ are plotted as a
function of the azimuthal angle φ in Figure 6b. The fitting
curve in Figure 6b gives t⊥ = 1.06 meV. This is much
larger than �/τ ≈ 0.16 meV estimated from the Dingle
temperature of the γ-orbit of about 0.3 K corresponding
to the scattering time τ ≈ 4.1 ps [6]. The large t⊥, satisfy-
ing the condition �/τ 	 t⊥, again indicates the coherent
interlayer interaction.
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The estimated interlayer transfer integral, t⊥ ≈
1 meV, is much larger than those in other or-
ganic conductors; the reported t⊥ is 0.04 meV for κ-
(ET)2Cu(NCS)2 [38], 0.06 meV for κ-(ET)2I3 [39], and
0.5 meV for β-(ET)2I3 [22]. The obtained value is, how-
ever, in agreement with the value estimated from the split-
ting of the SdH oscillations (t⊥ ∼ 2 meV) [6]. This also
agrees with the long interlayer Ginzburg-Landau coher-
ence length (ξc(0) ≈ 50 Å) [4]. The present compound
has a quasi-two-dimensional electronic system with a rel-
atively large interlayer interaction. Although most of the
two-dimensional organic conductors have flat donor sheets
well separated by the anions, the anions of the present
compound do not make a well-defined layer, but the
donors have direct inter-layer contacts [1]. There are con-
siderable inter-layer donor-donor interactions along the c-
axis. This is the reason of the large three-dimensionality
of the present compound.

The magnetoresistance peak, 2∆, is not clearly ob-
served around the b direction (|φ| ≥ 60◦) as shown in
Figure 6a. In κ-(ET)2Cu(NCS)2, the magnetoresistance
peaks have been observed in all azimuthal angles. To ob-
serve the peak effect, the scattering energy, ∆E ∼ �/τ ,
should be much smaller than the energy separation �Ω
i.e. Ωτ � 1, where Ω is the cyclotron frequency. The crit-
ical field, which is given by Ωτ = 1, is written by [37]

Bc(φ) =
�

ed⊥τ

√
m∗(φ)
2t⊥

=

√
kF,max kF,min m∗

2t⊥[k2
F,max sin2(φ − ξ) + k2

F,min cos2(φ − ξ)]

× �

ed⊥τ
. (8)

This gives the minimum and the maximum critical fields
respectively as Bc,min ∼ 9.1 T for φ ∼ 0◦ and Bc,max ∼
13.5 T for φ ∼ 90◦. Our magnetic field, 13.5 T, is not
large enough to observe the peak effect around φ ∼ 90◦.
The large Bc is expected to reduce the peak intensity.
In addition, the disappearance of the resistance peak is
associated with the broad peak width, 2∆ (Fig. 6b), which
in equation (7) comes from the large t⊥ as well as from
the large m∗(φ)/kF (φ) around φ ∼ 90◦.

4 Conclusion

In summary, we determined the Fermi wave number ratio
kF,a/kF,b ∼ 0.62 from the optical experiments, and show
the overall band structure. The AMRO shows an ellipti-
cal FS coming from the γ-orbit. This indicates that the
incommensurate anion potential is important in removing
the degeneracy of the energy bands on the zone boundary,
in agreement with the SdH measurement. The peak ef-
fect shows a considerably large interlayer transfer integral
t⊥ ≈ 1 meV and t‖/t⊥ ∼ 100. The present compound is an

anisotropic quasi-two-dimensional organic superconductor
with a relatively large interlayer interaction in contrast to
the usual highly two-dimensional organic superconductors
with a very small interlayer interaction.
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tific Research (No. 14740377) from the Ministry of Education,
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